Tag Archives: Innovation

The Innovators by Walter Isaacson – part 2 : Silicon (Valley)

What I am reading now following my recent post The Complexity and Beauty of Innovation according to Walter Isaacson is probably much better known: Innovation in Silicon Valley at the time of Silicon – Fairchild, Intel and the other Fairchildren. I have my own archive, nice posters from those days, one about the start-up / entrepreneur genealogy, with a zoom on Fairchild and one on Intel and one about the investor genealogy

Entrepreneurs…

SiliconValleyGenealogy-All

SiliconValleyGenealogy-Fairchild

SiliconValleyGenealogy-Intel

“There were internal problems in Palo Alto. Engineers began defecting, thus seeding the valley with what became known as Fairchildren: companies that sprouted from spores emanating from Fairchild.” [Page 184] “The valley’s main artery, a bustling highway named El Camino Real, was once the royal road that connected California’s twenty-one mission churches. By the early 1970s – thanks to Hewlett-Packard, Fred Terman’s Stanford Industrial Park, William Shockley, Fairchild and its Fairchildren – it connected a bustling corridor of tech companies. In 1971, the region got a new moniker. Don Hoefler, a columnist for the weekly trade paper Electronic News, began writing s series of columns entitled “Silicon Valley USA,” and the name stuck.” [Page 198]

… and Investors

WCVCGenealogy-All

WCVCGenealogy-Beginnning

“In the eleven years since he had assembled the deal for the traitorous eight to form Fairchild Semiconductors, Arthur Rock had helped to build something that was destined to be almost as important to the digital age as the microchip: venture capital.” [Page 185] “When he had sought a home for the traitorous eight in 1957, he pulled out a single piece of legal-pad paper, wrote a numbered list of names, and methodically phoned each one, crossing off the names as he went down the list. Eleven years later, he took another sheet of paper and listed people who would be invited to invest and how many of the 500’000 shares available at $5 apiece he would offer to each. […] It took them less than two days to raise the money. […] All I had to tell people was that it was Noyce and Moore. They didn’t need to know much else.” [Pages 187-88]

Rock_List

The Intel culture

“There arose at Intel an innovation that had almost as much of an impact on the digital age as any [other]. It was the invention of a corporate culture and management style that was the antithesis of the hierarchical organization of East Coast companies.” [[Page 189] “The Intel culture, which would permeate the culture of Silicon Valley, was a product of all three men. [Noyce, Moore and Grove]. […] It was devoid of the trappings of hierarchy. There were no reserved parking places. Everyone including Noyce and Moore, worked in similar cubicles. […] “There were no privileges anywhere” recalled Ann Bowers, who was the personnel director and later married Noyce, [she would then become Steve Jobs’ first director of human resources] “we started a form of company culture that was completely different than anything that had been before. It was a culture of meritocracy.
It was also a culture of innovation. Noyce had a theory that he developed after bridling the rigid hierarchy at Philco. The more open and unstructured a workplace, he believed, the faster new ideas would be sparked, disseminated, refined and applied.” [Pages 192-193]

The Complexity and Beauty of Innovation according to Walter Isaacson

The Innovators by Walter Isaacson is a great book because of its balanced description of the role of geniuses or disruptive innovators as much as of teamwork in incremental innovation. “The tale of their teamwork is important because we don’t often focus on how central their skill is to innovation. […] But we have far fewer tales of collaborative creativity, which is actually more important in understanding how today’s technology evolution was fashioned.” [Page 1] He also goes deeper: “I also explore the social and cultural forces that provide the atmosphere for innovation. For the birth of the digital age, this included a research ecosystem that was nurtured by the government spending and managed by a military-industrial collaboration. Intersecting with that was a loose alliance of community organizers, communal-minded hippies, do-it yourself hobbyists, and homebrew hackers, most of whom were suspicious of centralized authority.” [Page 2] ”Finally, I was struck by how the truest creativity of the digital age came from those who were able to connect the arts and sciences.” [Page 5]

the-innovators-9781476708690_lg

The computer

I was a little more cautious with chapter 2 as I have the feeling that the story of Ada Lovelace and Charles Babbage is well known. I may be wrong. But chapter 3 about the early days of the computer was mostly unknown to me. Who invented the computer? Probably many different people in different locations in the US, the UK and Germany, around WWII. “How did they develop this idea at the same time when war kept their two teams isolated? The answer is partly that advances in technology and theory made the moment ripe. Along with many innovators, Zuse and Stibitz were familiar with the use of relays in phone circuits, and it made sense to tie that to binary operations of math and logic. Likewise, Shannon, who was also very familiar with phone circuits, would be able to perform the logical tasks of Boolean algebra. The idea that digital circuits would be the key to computing was quickly becoming clear to researchers almost everywhere, even in isolated places like central Iowa.” [Page 54]

There would be a patent fight I did not know about. Read pages 82-84. You can also read the following on Wikipedia: “On June 26, 1947, J. Presper Eckert and John Mauchly were the first to file for patent on a digital computing device (ENIAC), much to the surprise of Atanasoff. The ABC [Atanasoff–Berry Computer] had been examined by John Mauchly in June 1941, and Isaac Auerbach, a former student of Mauchly’s, alleged that it influenced his later work on ENIAC, although Mauchly denied this. The ENIAC patent did not issue until 1964, and by 1967 Honeywell sued Sperry Rand in an attempt to break the ENIAC patents, arguing the ABC constituted prior art. The United States District Court for the District of Minnesota released its judgement on October 19, 1973, finding in Honeywell v. Sperry Rand that the ENIAC patent was a derivative of John Atanasoff’s invention.” [The trial had begun in June 1971 and the ENIAC patent was therefore made invalid]

I also liked his short comment about complementary skills. “Eckert and Mauchly served as counterbalances for each other, which made them typical of so many digital-age leadership duos. Eckert drove people with a passion for precision; Mauchly tended to calm them and make them feel loved.” [Pages 74-75]

Women in Technology and Science

It is in chapter 4 about Programming that Isaacson addresses the role of women. “[Grace Hopper] education wasn’t as unusual as you might think. She was the eleventh woman to get a math doctorate from Yale, the first being in 1895. It was not at all uncommon for a woman, especially from a successful family, to get a doctorate in math in the 1930s. In fact, it was more common than it would be a generation later. The number of American women who got doctorates in math during the 1930s was 133, which was 15 percent of the total number of American math doctorates. During the decade of the 1950s, only 106 American women got math doctorates, which was a mere 4 percent of the total. (By the first decade of the 2000 things had more than rebounded and there were 1,600 women who got math doctorates, 30 percent of the total.)” [Page 88]

Not surprisingly, in the early days of computer development, men worked more in hardware whereas women would be in software. “All the engineers who built ENIAC’s hardware were men. Less heralded by history was a group of women, six in particular, who turned out to be almost as important in the development of modern computing.” [Page 95] “Shortly before she died in 2011, Jean Jennings Bartik reflected proudly on the fact that all the programmers who created the first general-purpose computer were women. « Despite our coming of age in an era when women’s career opportunities were generally quite confined, we helped initiate the era of the computer. » It happened because a lot of women back then had studied math and their skills were in demand. There was also an irony involved: the boys with their toys thought that assembling the hardware was the most important task, and thus a man’s job. « American science and engineering was even more sexist than it is today, » Jennings said. « If the ENIAC’s administration had known how crucial programming would be to the functioning of the electronic computer and how complex it would prove to be, they might have been more hesitant to give such an important role to women.” [Pages 99-100]

The sources of innovation

“Hopper’s historical sections focused on personalities. In doing so, her book emphasized the role of individuals. In contrast, shortly after Hopper’s book was completed, the executives at IBM commissioned their own history of the Mark I that gave primary credit to the IBM teams in Endicott, New York, who had constructed the machine. “IBM interests were best served by replacing individual history with organizational history,” the historian Kurt Beyer wrote in a study of Hopper. “The locus of technological innovation, according to IBM was the corporation. The myth of the lone radical inventor working in the laboratory or basement was replaced by the reality of teams of faceless organizational engineers contributing incremental advancements.” In the IBM version of history, the Mark I contained a long list of small innovations, such as the ratchet-type counter and the double-checked card feed, that IBM’s book attributed to a bevy of little-known engineers who worked collaboratively in Endicott.
The difference between Hopper’s version of history and IBM’s ran deeper than a dispute over who should get the most credit. It showed fundamentally contrasting outlooks on the history of innovations. Some studies of technology and science emphasize, as Hopper did, the role of creative inventors who make innovative leaps. Other studies emphasize the role of teams and institutions, such as the collaborative work done at Bell Labs and IBM’s Endicott facility. This latter approach tries to show that what may seem like creative leaps – the Eureka moment – are actually the result of an evolutionary process that occurs when ideas, concepts, technologies, and engineering methods ripen together. Neither way of looking at technological advancement is, on its oqn, completely satisfying. Most of the great innovations of the digital age sprang from an interplay of creative individuals (Mauchly, Turing, von Neumann, Aiken) with teams that knew how to implement their ideas.”
[Pages 91-92]

Google about Disruptive and Incremental Innovation

This is very similar to what I read about Google and posted recently in The Importance and Difficulty of Culture in Start-ups: Google again…: “To us, innovation entails both the production and implementation of novel and useful ideas. Since “novel” is often just a fancy synonym for “new”, we should also clarify that for something to be innovative, it needs to offer new functionality, but it also has to be surprising. If your customers are asking for it, you aren’t being innovative when you give them what they want; you are just being responsive. That’s a good thing, but it’s not innovative. Finally “useful” is a rather underwhelming adjective to describe that innovation hottie, so let’s add an adverb and make it radically useful, Voilà: For something to be innovative, it needs to be new, surprising, and radically useful.” […] “But Google also releases over five hundred improvements to its search every year. Is that innovative? Or incremental? They are new and surprising, for sure, but while each one of them, by itself is useful, it may be a stretch to call it radically useful. Put them all together, though, and they are. […] This more inclusive definition – innovation isn’t just about the really new, really big things – matters because it affords everyone the opportunity to innovate, rather than keeping it to the exclusive realm of these few people in that off-campus building [Google[x]] whose job is to innovate.” [How Google Works – Page 206]

Maybe more about The Innovators soon…

Can the next google come from Europe? An answer by Fathi Derder

Fathi Derder, a young Swiss politician and former journalist, gave his views in the book Le prochain Google sera Suisse (à 10 conditions). [The Next Google will be Swiss (provided 10 conditions)].

book-07210700

I recognized some of my concerns in the foreword of the author, in his frustrations and his hopes. “Our start-ups do not grow in Switzerland. No trace of a Swiss Google. The last major Swiss success was Logitech, thirty years ago. Our start-ups are certainly good. But when it comes to grow rapidly and on a large scale, they leave Switzerland”[Page 9]. And his answer? “[…] If Switzerland wants to remain prosperous, if it wants to be able to anticipate and invent the world of tomorrow, we need two basic ingredients: memory and craziness” [Page 11].

Switzerland is not world champion of innovation

Derder is concerned about the lack of interest of the media and politicians because everything would be fine in the best of Swiss worlds…but: “The rankings are misleading and based on an abuse of language: we are certainly world champions in education, research, science and patents (from the multinational corporattions). But not in innovation. These are two different things. But in terms [of innovation] (the transformation of ideas into products and services that create value), there is much room for improvement” [Page 18-19].

To have the next Google in Switzerland, you need to have to the three “C”, Capital, Cerveaux (brains) and a Culture of failure and risk [page 35].

This certainly reminds me the “How to be Silicon Valley” by Paul Graham: “Within the US, towns have become startup hubs if and only if they have both rich people and nerds. Few startups happen in Miami, for example, because although it’s full of rich people, it has few nerds. It’s not the kind of place nerds like. Whereas Pittsburgh has the opposite problem: plenty of nerds, but no rich people.”

In this book of almost 180 pages are listed the ten conditions:
• Attracting the best talents
• Boosting venture capital (and encourage investment in SMEs)
• Simplifying the lives of entrepreneurs (and of investors)
• Providing resources for basic research
• Bringing universities and businesses together
• Developing thematic centers of excellence
• Establishing a national digital strategy
• Committing the state (and the army) to the ecosystem
• Enhancing data protection (and encouraging citizens to protect them anonymously)
• Valuing the Swiss success stories (and make them popular)

Derder is a super supporter of start-ups and his book is a great addition to understanding why start-ups are unique and essential. I believe however that the challenges are mostly cultural as I wrote recently in Why doesn’t Europe create any Google or Apple? You will not be surprised therefore if I prefer to stop with his 3 “C”s. In a presentation I recently prepared, I gave my ten conditions for innovation, all linked to a culture of innovation:
• Collaborate, even with Competitors
• Be Trustful
• Have a healthy disrespect for authority
• Do not lie (to yourself)
• Believe in your Instinct …
• … and have Courage
• In Innovation, the example comes from above
• Bet on Talent (and Youth)
• Do not fear Failure
• Be passionate

Up to you to choose…

Peter Thiel – Zero to One (part 2)

I just finished Zero to One and here are a few more comments, less about entrepreneurship than about social issues. Whatever the reputation of Thiel in Silicon Valley as a possible Libertarian, there were a couple of topics he addresses very convincingly. He is not a pure Contrarian. He disagrees with mainstream fashion in a very serious manner. Here are a couple of examples:

thi22_3

– The machine will not replace humankind
Yes computers have made impressive progress in the recent decades, but not to the point of replacing mankind. He shows very convincingly through the cases of Paypal and Palantir [pages 144-148] that computers cannot solve automatically tough issues but are only (excellent and critical) complements to human beings. Even the Google experiment of recognizing cats “seems impressive – until you remember that an average four-year-old can do it flawlessly” [page 143]. He finishes his chapter about Man and Machine this way: “But even if strong AI is a real possibility rather than an imponderable mystery, it won’t happen anytime soon: replacement by computers is a worry for the 22nd century. Indefinite fears about the far future shouldn’t stop us from making definite plans today. Luddites claim that we shouldn’t build the computers that might replace people someday; crazed futurists argue that we should. These two positions are mutually exclusive but they are not exhaustive: there is room in between for sane people to build a vastly better world in the decades ahead. As we find new ways to use computers, they won’t just get better at the kinds of things people already do: they’ll help us to do what was previously unimaginable” [pages 150-151]. You will not be surprised I prefer this to Kurweil views.

– Greentech was a bubble and it was obvious from day 1.
I was always puzzled with greentech/cleantech. Why are people so excited about the promise to solve an important problem when we do not have any solution. Thiel is far tougher. First he shows the obvious: it was a bubble.

renixx

Then he analyzes this industry through his “zero to one” arguments.
“Most cleantech companies crashed because they neglected one or more of the seven questions that every business must answer:
– Engineering: can you create a breakthrough technology instead of incremental improvements?
– Timing: is now the right time to start your particular business?
– Monopoly: are you starting with a big share of a small market?
– People: do you have the right team?
– Distribution: do you have a way to not just create but deliver your product?
– Durability: will your market position be defensible 10 and 20 years into the future?
– Secret: have you identified a unique opportunity that others don’t see?
If you do not have answers to these questions, you’ll run into lots of “bad luck” and your business will fail. If you nail all seven, you’ll master fortune and succeed. Even getting five or six correct might work. But the striking thing about the cleantech bubble was that people were starting companies with zero good answers – and that meant hoping for a miracle”
[page 154]. What’s next? Fintech?

How do you measure your entrepreneurial ecosystem?

The title of this post is the first sentence of the report published by the Kauffman foundation entitled Measuring an Entrepreneurial Ecosystem. And it is a critical question. For years, universities, cities, regions, countries try to assess if they are innovative and entrepreneurial enough. And unfortunately, this is often measured through inputs and not outputs. Sometimes for good reasons, because stakeholders can offer favorable conditions but in the end entrepreneurs perform and stakeholders help but do not act…

measuring_an_entrepreneurial_ecosystem

The Kauffman foundation is proposing a set of metrics to help in assessing your ecosystem. It is an ambitious proposal as these are not easy to obtain, but they look very interesting and I thought it would be worth describing them here. They are classified in 4 topics:

DENSITY

1- Number of new and young companies per 1,000 people,
where “young” can mean less than five or ten years old. This will tell you, in the most basic way, how the level of entrepreneurship changes over time relative to population.

2- Share of employment accounted for by new and young companies.
Entrepreneurial vibrancy should not just be measured by the number of companies — it also should include all the people involved in those companies. This will capture founders and employees.

3- Density of new and young companies in terms of specific sectors.
Some places already may have a particular economic sector that has been identified as the centerpiece of an ecosystem, such as “creative” industries or manufacturing. Again using population as a denominator.

FLUIDITY

4- Population flux, or individuals moving between cities or regions.
Entrepreneurial vibrancy means people both coming and going. From an ecosystem perspective, this means that the entrepreneurial environment must be fluid to enable entrepreneurs to engage. The obverse, of course, is that limits on fluidity will suppress entrepreneurial vibrancy.

5- Population flux within a given region.
Individuals also need to be able to find the right match with different jobs within a region. The pace at which they are able to move from job to job and between organizations should be an important indicator of vibrancy.

6- The number (and density) of high-growth firms,
which are responsible for a disproportionate share of job creation and innovation. A concentration of high-growth firms will indicate whether or not entrepreneurs are able to allocate resources to more productive uses. Importantly, high growth is not necessarily synonymous with high tech.

CONNECTIVITY

7- Connectivity with respect to programs, or resources, for entrepreneurs.
A vibrant entrepreneurial ecosystem is not simply a collection of isolated elements — the connections between the elements matter just as much as the elements themselves. The diversity of your entrepreneurial population is likely to be high, and a one-stop shop for serving entrepreneurs is unlikely to do much good in serving all of them. Entrepreneurs move through an ecosystem, piecing together knowledge and assistance from different sources, and the connectivity of supporting organizations should help underpin the development of a strong entrepreneurial network.

8- Spinoff rate.
The entrepreneurial “genealogy” of a given region, as measured by links between entrepreneurs and existing companies, is an important indicator of sustained vibrancy.

9- “Dealmaker” network
Individuals with valuable social capital, who have deep fiduciary ties within regional economies and act in the role of mediating relationships, making connections and facilitating new firm formation play a critical role in a vibrant entrepreneurial ecosystem.

DIVERSITY

10-Economic diversification,
an important concept because no city or region should be overly reliant on one particular industry. At a country level, research has shown that economic complexity is correlated with growth and innovation.

11- Attraction and assimilation of immigrants.
Historically, immigrants have a very high entrepreneurial propensity.

12- Economic mobility,
i.e. the probability of moving up or down the economic ladder between different income quintiles. The purpose is to improve the quality of life for your citizens, to expand opportunity, and to create a virtuous circle of opportunity, growth, and prosperity.

Invention is the Mother of Necessity!

I am reading the remarkable Guns, Germs, and Steel: The Fates of Human Societies by Jared Diamond.

Ggas_human_soc

I did not think initially that I would have anything to extract from it related to entrepreneurship and innovation. And I was wrong. I just read a section about human inventions and innovations, which I liked very much. Here it is.

THF STARTING POINT for our discussion is the common view expressed in the saying “Necessity is the mother of invention.” That is, inventions supposedly arise when a society has an unfulfilled need: some technology is widely recognized to be unsatisfactory or limiting. Would-be inventors, motivated by the prospect of money or fame, perceive the need and try to meet it. Some inventor finally comes up with a solution superior to the existing, unsatisfactory technology. Society adopts the solution if it is compatible with the society’s values and other technologies.
Quite a few inventions do conform to this commonsense view of necessity as invention’s mother. In 1942, in the middle of World War II, the U.S. government set up the Manhattan Project with the explicit goal of inventing the technology required to build an atomic bomb before Nazi Germany could do so. That project succeeded in three years, at a cost of $2 billion (equivalent to over $20 billion today). Other instances are Eli Whitney’s 1794 invention of his cotton gin to replace laborious hand cleaning of cotton grown in the U.S. South, and James Watt’s 1769 invention of his steam engine to solve the problem of pumping water out of British coal mines.
These familiar examples deceive us into assuming that other major inventions were also responses to perceived needs. In fact, many or most inventions were developed by people driven by curiosity or by a love of tinkering, in the absence of any initial demand for the product they had in mind. Once a device had been invented, the inventor then had to find an application for it. Only after it had been in use for a considerable time did consumers come to feel that they “needed” it. Still other devices, invented to serve one purpose, eventually found most of their use for other, unanticipated purposes. It may come as a surprise to learn that these inventions in search of a use include most of the major technological breakthroughs of modern times, ranging from the airplane and automobile, through the internal combustion engine and electric light bulb, to the phonograph and transistor. Thus, invention is often the mother of necessity, rather than vice versa.
A good example is the history of Thomas Edison’s phonograph, the most original invention of the greatest inventor of modern times. When Edison built his first phonograph in 1877, he published an article proposing ten uses to which his invention might be put. They included preserving the last words of dying people, recording books for blind people to hear, announcing clock time, and teaching spelling. Reproduction of music was not high on Edison’s list of priorities. A few years later Edison told his assistant that his invention had no commercial value. Within another few years he changed his mind and did enter business to sell phonographs but for use as office dictating machines. When other entrepreneurs created jukeboxes by arranging for a phonograph to play popular music at the drop of a coin, Edison objected to this debasement, which apparently detracted from serious office use of his invention. Only after about 20 years did Edison reluctantly concede that the main use of his phonograph was to record and play music.
The motor vehicle is another invention whose uses seem obvious today. However, it was not invented in response to any demand. When Nikolaus Otto built his first gas engine, in 1866, horses had been supplying people’s land transportation needs for nearly 6,000 years, supplemented increasingly by steam-powered railroads for several decades. There was no crisis in the availability of horses, no dissatisfaction with railroads.
Because Otto’s engine was weak, heavy, and seven feet tall, it did not recommend itself over horses. Not until 1885 did engines improve to the point that Gottfried Daimler got around to installing one on a bicycle to create the first motorcycle; he waited until 1896 to build the first truck.
In 1905, motor vehicles were still expensive, unreliable toys for the rich. Public contentment with horses and railroads remained high until World War I, when the military concluded that it really did need trucks. Intensive postwar lobbying by truck manufacturers and armies finally convinced the public of its own needs and enabled trucks to begin to supplant horse-drawn wagons in industrialized countries. Even in the largest American cities, the changeover took 50 years.
Inventors often have to persist at their tinkering for a long time in the absence of public demand, because early models perform too poorly to be useful. The first cameras, typewriters, and television sets were as awful as Otto’s seven-foot-tall gas engine. That makes it difficult for an inventor to foresee whether his or her awful prototype might eventually find a use and thus warrant more time and expense to develop it. Each year, the United States issues about 70,000 patents, only a few of which ultimately reach the stage of commercial production. For each great invention that ultimately found a use, there are countless others that did not. Even inventions that meet the need for which they were initially designed may later prove more valuable at meeting unforeseen needs. While James Watt designed his steam engine to pump water from mines, it soon was supplying power to cotton mills, then (with much greater profit) propelling locomotives and boats.

THUS, THE COMMONSENSE view of invention that served as our starting point reverses the usual roles of invention and need. It also overstates the importance of rare geniuses, such as Watt and Edison. That “heroic theory of invention,” as it is termed, is encouraged by patent law, because an applicant for a patent must prove the novelty of the invention submitted. Inventors thereby have a financial incentive to denigrate or ignore previous work. From a patent lawyer’s perspective, the ideal invention is one that arises without any precursors, Like Athene springing fully formed from the forehead of Zeus.
ln reality, even for the most famous and apparently decisive modern inventions, neglected precursors lurked behind the bald claim “X invented Y.” For instance, we are regularly told, “James Watt invented the steam engine in 1769,” supposedly inspired by watching steam rise from a teakettle’s spout. Unfortunately for this splendid fiction, Watt actually got the idea for his particular steam engine while repairing a model of Thomas Newcomen’s steam engine, which Newcomen had invented 57 years earlier and of which over a hundred had been manufactured in England by the time of Watt’s repair work. Newcomen’s engine, in turn, followed the steam engine that the Englishman Thomas Savery patented in 1698, which followed the steam engine that the Frenchman Denis Papin designed (but did not build) around 1680, which in turn had precursors in the ideas of the Dutch scientist Christiaan Huygens and others. All this is not to deny that Watt greatly improved Newcomen’s engine (by incorporating a separate steam condenser and a double-acting cylinder), just as Newcomen had greatly improved Savery’s.
Similar histories can be related for all modern inventions that are adequately documented. The hero customarily credited with the invention followed previous inventors who had had similar aims and had already produced designs, working models, or (as in the case of the Newcomen steam engine) commercially successful models. Edison’s famous “invention” of the incandescent light bulb on the night of October 21, 1879, improved on many other incandescent light bulbs patented by other inventors between 1841 and 1878. Similarly, the Wright brothers’ manned powered airplane was preceded by the manned unpowered gliders of Otto Lilienthal and the unmanned powered airplane of Samuel Langley; Samuel Morse’s telegraph was preceded by those of Joseph Henry, William Cooke, and Charles Wheatstone; and Eli Whitney’s gin for cleaning short-staple (inland) cotton extended gins that had been cleaning long-staple (Sea Island) cotton for thousands of years.
All this is not to deny that Watt, Edison, the Wright brothers, Morse, and Whitney made big improvements and thereby increased or inaugurated commercial success. The form of the invention eventually adopted might have been somewhat different without the recognized inventor’s contribution. But the question for our purposes is whether the broad pattern of world history would have been altered significantly if some genius inventor had not been born at a particular place and time. The answer is clear: there has never been any such person. All recognized famous inventors had capable predecessors and successors and made their improvements at a time when society was capable of using their product. As we shall see, the tragedy of the hero who perfected the stamps used for the Phaistos disk was that he or she devised something that the society of the time could not exploit on a large scale.
[Pages 242-245]

My coming out – in the world of start-ups

No it is not a true coming out à la Tim Cook, but a much less spectacular message… I woke up early this morning very disturbed. As you can see below, the ecosystem to support entrepreneurs at EPFL (finance, coaching, exposure and office space) is rich and complex. Yet our results are average not to say mediocre… all this is in fact useless without the ambition and risk-taking of enthusiastic and passionate individuals.

I’m not talking about people, but the system. A few days ago, I said to colleagues I was a matchmaker. I encourage meetings and I put the oil in the wheels. Then I smiled, thinking – I’m usually not too vulgar – that I offered vaseline for introducing investors. Fifteen years ago, an entrepreneur who had enjoyed a chat told me that I made him think of a prostitute but hidden behind me, there were nasty pimps…

Two days ago, I was lucky to listen at EPFL to a Nobel Prize in economics who explained that the Western world is in decline, that the crisis can be explained in part by a weak innovation. Corporatism and financiarization are some reasons of this. Then there was a shocking message from another speaker. Switzerland would be fine because it is hard-working while its neighbor would go wrong because its workers start their weekend on Wednesday at noon. Who can believe that unemployment and bankruptcy in Detroit would come from the laziness of the automobile workers and the success of Silicon Valley because of workaholic nerds. Things are much more complex! Just see in particular the recent analysis of Thomas Picketty or the related MIT Technology Review Technology and Inequality.

Four days ago, I listened to the US ambassador to Switzerland and Liechtenstein. Suzi Levine knows the world of start-ups. She is therefore interested in the situation in Switzerland. I noticed two of her messages:
– First “you have a lot of money but little capital”, I leave you to think about the message that was given to her at EPFL I think, “you have a lot of money but little capital”.
– Second, the weakness of the female presence in this entrepreneurial world. She therefore particularly appreciated that the Prix Musy be created this year. But our efforts will be useless, if we do not encourage and allow the emergence of passionate and adventurous entrepreneurs that create wealth and value… it’s not just about women, but diversity in general which should not be hindered by corporatism and financiarization.

EPFL-VoD-funding

More on the EPFL support to entrepreneurs

EPFL-VoD-support

What has Silicon Valley to do with Capitalism?

(this is a quick and dirty translation of a French post as it is linked to a French radio broadcast – sorry for the bad english if any)

I was a guest yesterday of French radio Culturesmonde France Culture in a series about capitalsim entitled Des capitalismes (1/4) – Silicon valley: l’émancipation par l’argent. I had to give my views abotu SV and capitalism. Is it unique or extreme? Does the area care, does it have an ideology or is it indifferent to capitalism?

FranceCultureMondes-SiliconValley

The topic is rich and complex because with 7 million people, opinions in SV are also diverse and were built over 50 years. Each decade brough a new generation of entrepreneurs and investors. You can listen to the broadcast (in French) who also involved Yann Moulier-Boutang, who talked about « cognitive capitalism » and Sébastien Caré, a spécialist of libertarian thinking.

A big thank you to Clémence Allezard who prepared the series, pushing me to think about the region in a manner I was not used to. 🙂 So I thought about it as follows. Is SV an extreme form or a unique form of capitalism? or as I have a tendency to think a region quite indifferent to capitalism? On the one hand you have large powerful firms who do not really pay taxes, you have a fast Schumpterian creative destruction, the government is not active as it is in Europe (health, schools, transportation) so that firms (at the anecdote level or not?) do the work (Google buses, Apple And FB recent initiative about freezing women eggs, Peter Thile encouraging school dropouts) and even induce the SF authorities in changing housing laws. One the other hand, it is not just extreme, it is unique, SV created venture capital, systematized stock options, and has active co-opetition. Richard Newton was saying SV is the firm and all the companies are its divisions. People move from one to the other easily with market dynamics.

Finally, it is the “revenge of the nerds”. They are problem solvers, and do not care about society (hence the libertarians) and even about capitalism (making money is a by-product and if an objective, far from being the only one). I read a great New Yorker article where George Packer explains that these nerds hate the friction created by negotiation and compromises politics and society necessarily induce. So they avoid it as long as they can. And do more when they feel limited by the government but are quite neutral about it. They are selfish. But i doubt “changing the world to make it a better place” is totally convincing at the same time. It is more selfish than generous. These people are mild versions of Asperger and are obsessed by solving their problems. If it solves others’, good, not critical. (Of course SV is 7 million people and is a diverse region, I am focusing on what is visible). I was saying to the journalist when we prepared the talk, that I see more indifference than real strategy, I see some lobbying in SF or Washington, but rather limited compared to general lobbying in the USA.

Another way to summarize is: is there a particular ideology of capitalism in Silicon Valley? I would say that rather than a strategy, there has been a practice that was put in place over decades, by iteration, by trial and error. Ultimately, Silicon Valley is the meeting of ideas (entrepreneurs, and academics sometimes) and money (investors). But unlike the rest of the world where investors are bankers who lend money, in SV they are often former entrepreneurs who “give” money (in the sense that they take the risk of not finding it back), in fact they take shares in the company (often around 50%). They literally invented venture capital, which has found its final form in the 80’s. In addition, the “stock options” decried in Europe are recognized in the SV as a motivation. Secretaries at Apple or Microsoft did sometimes become millionaires, something unthinkable at home in Europe. I have also said, there is an optimism that encourages risk-taking. Moreover, there is no real risk because the skill allows you to find a new job quickly. The risk lies in the possible error in the choice of the project and nobody is ever ruined normally, except one’s health. And as the model works, it is enriched in new areas beyond which the electronics is the root, through the electric car (Tesla Motors), aeronautics (SpaceX) and even the food 2.0 movement (for synthetic food). And the last frontier, aging, death, trans-humanism … which seems to me personally crazy, but …

As a post-scriptum, some comments I got… very interesting! i think SV is more diverse these days. there are the really old school types, like intel, cisco, even apple. then there are places like google and Facebook, that actually do something valuable. and then there are the startups with a hand full of 20 year olds that do not much, but have valuations measured in billions. i think the question should be answered differently for the different groups. and it’s important to not lump cisco in with, say, whatsapp or snapchat.

i’d say for many of them, it’s indifferent to mildly positive feeling abotu politics, as you say. for some (many of the VCs) it’s definitely capitalism on steroids. (or at least, they like to think of themselves that way; they blabber all the time about “wealth creation”, making sure that much of that new wealth goes to them.) more than capitalism, i think what’s concentrated in SV is talent, especially, technical talent. creative destruction resonates *very strongly* with people here; the whole idea of SV is that a handful of kids can change an entire industry, or even create a new one. they usually fail, and sometimes they succeed. imagine how steve jobs or the google guys would have done in europe. the google guys would have gone to the librarians and asked, how can we help you find information? steve jobs would have run long, extensive marketing tests to determine what people want. or maybe he’d go to siemens to try to convince some high level manager that a smart phone was a good idea. of course what happened is way cooler. steve jobs had better taste than everyone else, so he made stuff he liked, period. and the google guys just forged a new path, without seeking the endorsement or buy in of the librarians. in europe, a startup would try to get some giant company to use their product/technology, a long, boring, and tedious process.

typically, a handful of EPFL students would not imagine/believe that they can change the world. stanford students (who are not more talented) do. so, i think it’s mostly a cultural difference, and not something that has to do with capitalism.

Was Christensen wrong and is Disruptive Innovation a shaky theory?

Clayton Christensen has been one of my heroes. Will I have to kill this father figure? The often excellent New Yorker magazine published recently The Disruption Machine with subtitle What the gospel of innovation gets wrong. Author Jill Lepore knows a lot about the Innovation gurus from Schumpeter to Porter and Christensen and what she has to say is at least very disturbing.

NY-Disrupt
“Disruption is a theory of change
founded on panic, anxiety,
and shaky evidence.”

You have to read the article: Lepore seems to have strong arguments about the weaknesses of Christensen’s. In the Disk Drive industry, she claims, Seagate Technology was not felled by disruption. Same with Bucyrus and Caterpillar for the mechanical-excavator industry or “Today, the largest U.S. producer of steel is — U.S. Steel”. Difficult for me to assess the claims. I have to admit I had read more recent books of Christensen which were really disappointing but I thought his first breakthrough remained strong.

Funnier: “The theory of disruption is meant to be predictive. On March 10, 2000, Christensen launched a $3.8-million Disruptive Growth Fund. Less than a year later, the fund was quietly liquidated. In 2007, Christensen told Business Week that “the prediction of the theory would be that Apple won’t succeed with the iPhone,” adding, “History speaks pretty loudly on that.” In its first five years, the iPhone generated a hundred and fifty billion dollars of revenue.”

There has been a debate following Lepore’s claims which I will let you discover:

– Business Week: Clayton Christensen Responds to New Yorker Takedown of ‘Disruptive Innovation’: here.

– Forbes: What Jill Lepore Gets Wrong About Clayton Christensen and Disruptive Innovation: here.

– Slate: Even the Father of Disruption Thinks “Disruption” Has Become a Cliche: here.

PS: thanks to Martin for pointing that amazing article to me!

Innovation and Society: are the Returns and Benefits Sufficient?

Here is my latest contribution to Entreprise Romande. I return to a subject that is dear to me, Innovation and Society. (If you read French, the original version is certainly better…)

ER-Lebret-June2014

The Enterprise is more than ever at the core of the political debates through its role in the creation of jobs and wealth – both individual and collective. It is indirectly the source of populism and of protectionist temptations. Inside and outside of its walls, innovation is the subject of similar tensions: are the returns and benefits of innovation sufficient for society?

Mariana Mazzucato and the Entrepreneurial State

A recent book tackles the topic of the respective roles of business and government in innovation: Mariana Mazzucato, a professor at the University of Sussex, develops in The Entrepreneurial State [1] – a fascinating and quasi-militant book – the argument that the States have not collected the fruits not only of direct investments in their universities, and even indirectly from the help and support provided to businesses, investments and supports that are at the origin of the major innovations of the last fifty years.

Mazzucato brilliantly illustrates this through the example of the iPhone and the iPad, which integrate components initially financed by the public bodies: from electronics developed for the space and military programs to the touch screen or GPS, or even Siri, the voice recognition tool (which has sources at EPFL), the author shows that Apple has masterfully integrated technologies initiated by public money. Google is also the result of research done at StanfordUniversity. Mazzucato adds that clinical trials for new drugs are mainly made ​​in hospitals funded by public money, from molecules equally discovered in university laboratories.

Mazzucato therefore advocates major reforms both on the governance of the initial support and on taxation. She fights for a new tax system that would compensate the absence or insufficiency of direct returns to universities or from businesses, all the more that it is indeed undeniable that multinational companies easily optimize their taxation. She shows how Apple has taken advantage of international rules to create subsidiaries in Nevada or Ireland to minimize its taxes.

The English researcher is convincingly claiming that Apple has to pay more. But how to pay? Paying a license for the GPS, but to whom? I’m not even sure that the GPS is patented. And if the Internet had been patented, it would probably not have had the same development – I do not ned to go over the limitations of the French Minitel. By seeking more direct financial returns (which are not as insignificant as one might think – Stanford has received more than $300M for its equity shares in Google and over $200M of the first patents in biotechnology), the risk would be very high to discourage creators and stifle innovation. I doubt that the solution lies in more rigorous national rules.

Peter Thiel and the Individual Entrepreneur

Peter Thiel, an libertarian entrepreneur and investor, is so opposed to such views that he encourages youung people motivated in entrepreneurship to abandon their studies by providing them with $ 100,000 grants and he even imagines moving businesses to offshore vessels off California so they totally escape tax. He is afraid of any form of public support which, he considers, quickly becomes bureaucratic. It is worth adding that Thiel’s motto also shows his skepticism about the social benefits of innovation: “We wanted flying cars; instead we got 140 characters.” [2]

Upstream, there is therefore the question of direct returns and the actual role of the state. But without the incredible creativity of Steve Jobs at Apple, without the extraordinary ambition of Larry Page and Sergei Brin at Google, without the vision of Bob Swanson, a co-founder of Genentech, the world would probably not have experienced the same technological revolutions. Downstream, the question arises of how to create international rules on innovation. Let me make a wide digression. The Internet, another innovation initiated by public authorities, has become a major topic in the political, economic and fiscal fields. But “neutrality and self-organization are part of the libertarian options […] and are inconsistent with politics. Humanity must seize this opportunity to revisit what is considered important. […] The Internet enables the emergence of a global political space, but it is still to be invented. At the time of this invention, the Internet will probably be gone!” [3]

If from experience I lean more toward Thiel’s view on innovation as an individual act of exception, actually quite far from the public investment, even if it is its seed, yet, I cannot agree with abandoning the public good. It is the soil that allows the emergence of exceptional talent. Companies also have their share of responsibility in discounting the importance of the collectivity. Just like in any complex human activity, innovation is a delicate balance between private and public actors. But especially today, issues have become global. The question is not so much as Mazzucato says that the role of the state has been largely underestimated in this process, but rather that the tax return has largely been decreased by globalization and the lack of economic governance.

Tax as a single global solution?

Does society receive any return from the public money spent on schools, roads, security? No, because it’s not an investment in the true sense of an objective of financial gain. These are infrastructure provisions that allow citizens and businesses to exist and develop properly. And they 8should) pay taxes in return. When Darpa funds Stanford, it is not sure that a student from Korea will not benefit from it and later work for Samsung. The concept of ​​supporting national champions seems of another age.

We are left with Tax, in a renewed vision of its global governance. Whether innovation is in the public or private domain, the world globalization will soon prevent from hiding behind the argument of whom is basically at its origin. Not only individuals but states also must agree upom a greater share of its profits, at the risk of serious crises. At a time when Switzerland reviews its tax policy and its citizens think they can create barriers from its neighbors as its borders, it is important to be aware that the current tensions are an opportunity to revisit the status of innovation in society before new major crises emerge. Wishful thinking?

[1] The Entrepreneurial State – Debunking Public vs. Private Sector Myths. 2013, Anthem Press, http://marianamazzucato.com
[2] Peter Thiel. Zero to One – Notes on Startups or How to Build the Future. Sept. 2014, Crown Business press, http://zerotoonebook.com
[3] Boris Beaude. Les fins d’Internet. 2014, FYP Editions, http://www.beaude.net/ie